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Abstract—Over the past few years, SMTstring solvers have found their applications in an increasing number of domains, such as program

analyses inmobile andWebapplications, which require the ability to reason about string values. A series of research has been carried out

to find quality issues of string solvers in terms of its correctness and performance. Yet, none of themhas considered the performance

regressions happening acrossmultiple versions of a string solver. To fill this gap, in this paper, we focus on solver performance regressions

(SPRs), i.e., unintended slowdowns introduced during the evolution of string solvers. To this end, we developSPRFinderto not only generate

test cases demonstrating SPRs, but also localize the probable causes of them, in terms of commits.We evaluated the effectiveness of

SPRFinderon three state-of-the-art string solvers, i.e., Z3Seq, Z3Str3, andCVC4. The results demonstrate thatSPRFinderis effective in

generatingSPR-inducing test cases and also able to accurately locate the responsible commits. Specifically, the average running time on the

target versions is 13.2� slower than that of the reference versions. Besides, we also conducted the first empirical study to peek into the

characteristics of SPRs, including the impact of random seed configuration for SPRdetection, understanding the root causes of SPRs, and

characterizing the regression test cases through case studies. Finally, we highlight that 149uniqueSPR-inducing commitswerediscovered in

total bySPRFinder, and 27of them have been confirmed by the corresponding developers.

Index Terms—SMTstring solver, performance regression, SPRFinder

Ç

1 INTRODUCTION

THE Satisfiability Modulo Theories (SMT) problem is a
class of decision problems for first-order formula

extended with various background theories. A few well-
established SMT solvers (e.g., Z3 [1] and CVC4 [2]) have
been developed for determining the satisfiability of SMT
formula in the theories of Boolean, linear, non-linear arith-
metics, as well as string operations, etc. These solvers have
been widely adopted in supporting many practical applica-
tions, such as software/hardware verification [3], [4], [5],
bug finding [6], [7], type inference [8], [9], synthetic biol-
ogy [10]. String solvers are specialized SMT solvers with the
ability to reason about string values, which find their appli-
cations in an increasing number of domains, such as the

security analyses of mobile and Web applications [11], [12].
As a fundamental and universal reasoning engine, the qual-
ity of SMT solvers is crucial to the upper-layer applications.

Same as all other software systems, SMTsolvers have quality
issues (e.g., correctness bugs [13] and performance slowdowns)
which may greatly affect the soundness and efficiency of the
applications. For example, bugs in SMT solvers may cause
incorrect results in program verification or omission of test
cases in test case generation [14]. The efficiency of SMT solvers
also significantly impacts the performance of the applications.
Awell-known example is that the performance of solvers is one
key factor that limits the scalability of symbolic execution. For
example, when the path condition is too complex such as non-
linear arithmetic, itmay pose the scalability issues [15].

To this end, a few attempts have beenmade in finding bugs
in SMT solvers, mostly focusing on soundness bugs. For exam-

ple, recent studies (e.g., YinYang [13], STORM [14], String-

Fuzz [16], and BanditFuzz [17]) identified multiple bugs in the

arithmetic and string solvers of Z3 and CVC4, where either an

“UNSAT” result is produced for satisfiable input formula or

vice versa. The solvers can also be incomplete, in which case

they are not able to determine the satisfiability of the inputs

and report “UNKNOWN.”Nevertheless, comparedwith these

functional bugs, the performance of SMT solvers are less tested.

Except for detecting functional bugs, StringFuzz [16] and Ban-

ditFuzz [17] were also evaluated on the performance issues of

SMT solvers. Specifically, StringFuzz focuses on performance

testing of solvers, while BanditFuzz uses RL-based algorithm

to maximize the performance gap between different solvers.

As fundamental reasoning engines, the solvers’ runtime per-

formance bottlenecks can influence the efficiency of applica-

tions (e.g., symbolic execution, loop invariants inference).
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Researchers have proposed many methods (e.g., some heuris-
tics) to optimize their runtime performance [18], [19], [20].

There are a few hurdles to the detection and confirmation
of performance issues for SMT solvers. First, unlike func-
tional bugs, which can be manifested by deterministic test
inputs, performance issues often also depend on the configu-
rations, and sometimes non-deterministic factors such as
random seeds. Therefore, it is harder for non-expert users to
discover and report such issues. Second, debugging and
localizing the causes for performance issues is more difficult,
mainly because performance regressions are relative to a ref-
erence version of the solver. Looking at a single version
alone, there may not be enough clue on where the actual
problem is. Finally, performance changes—intended or
not—can be introduced frequently during software evolu-
tion. For instance, a fix for a soundness bug may slow down
the solver on certain inputs, and optimizations for some for-
mulasmay also cause a performance drop on other formulas.
Many of such problems are unknown to the developers [21]
and if remaining to be undetected, they may become techni-
cal debts and accumulate throughout the lifetime of the solv-
ers. We refer to such unintended performance slowdowns of
SMT solvers as solver performance regressions (SPRs). In this
paper, we aim to shed light on the solver performance
regressions. In particular, we focus on string solvers, i.e.,
SMT solvers using the string theory, such as Z3seq [1],
Z3Str3 [22], CVC4 [2], S3 [23], and S3N [12]. String solvers
have been widely applied in security analysis and verifica-
tion tasks [12] (e.g., the ubiquitous string operations in Web
applications), and have been shown to be susceptible to per-
formance bugs [17]. To understand better the causes of per-
formance slowdowns, we are particularly interested in how
performance is affected by code changes (i.e., commits) dur-
ing the evolution of string solvers. Towards this goal, we
attempt to address the following specific challenges.

1) How to effectively identify performance regressions,
ideally with diverse underlying root causes. Joseph et al.
[17] proposed a fuzzing technique, BanditFuzz, to discover
inputs running slow on one solver, when compared with
other reference solvers (e.g., Z3, CVC4, and MathSAT), aim-
ing to maximize the performance difference on distinct solv-
ers. However, what they report is performance difference
(between different solvers) while we are interested in find-
ing performance regressions in this work. More specifically,
we look at performance regression of an individual solver,
i.e., cases where a newer version runs much slower than an
older version. Comparing to BanditFuzz [17], we aim to dis-
cover solver performance regressions (SPRs) that unveil
more diverse root causes rather than a large number of
regressions sharing the same root cause. 2) How to debug
and localize the root causes once a performance regression
is detected. We use the commit(s) as an approximation to
the root cause and aim to find minimal code changes
responsible for the performance slowdown. 3) How to bet-
ter understand the different causes so that SPRs can be cor-
rectly mitigated. Performance debugging and analysis are a
significant challenge [24]. Performance regressions on SMT
solvers are rather convoluted and difficult to fix.

To address these challenges, we first implement a testing
tool, named SPRFinder, to detect SPRs in a range of solver
versions. SPRFinderis built on top of BanditFuzz from two

perspectives, i.e., an adaptive mutation and the diversity-
aware feedback. Thus, SPRFindercan detect SPRs which can
be traced back to a more diverse set of SPR-inducing code
changes. To localize probable causes for an SPR, we then
use a bisect-based algorithm to identify the responsible
commit(s). Furthermore, to better understand the detected
SPRs, we perform a case study on the intention of the local-
ized commits to find out the reasons causing the SPRs.

We evaluated the usefulness of SPRFinderon the latest
three versions of Z3 (i.e., 4.8.7, 4.8.8, and 4.8.9) and CVC4
(i.e., 1.7, 1.8, and 1.91). To conduct a fair comparison on SPR
detection, we first customized the functionality of Bandit-
Fuzz (named BanditFuzz_SPR) to use it on one type of solv-
ers with different versions. We take random fuzzing and
BanditFuzz_SPR as our experimental baselines. The experi-
ments demonstrate that SPRFinder is effective in detecting
SPRs when comparing with the baselines. Note that, the goal
of BanditFuzz is to maximize the performance gap between
different kinds of solvers, so that the results do not reflect the
performance of BanditFuzz in its original domain.

By evaluating the detected SPR cases on different ran-
dom seeds,2 we found that 96.8% of the detected SPR cases
(using the default seed) can still be reproduced with at least
one fixed seed configuration. With the commit localization
technique, we traced back to a total of 149 responsible com-
mits, where 27of them have been confirmed and 6of them
have been fixed. We further conducted an empirical study
on the 149 commits and found that the objectives of these
commits include: program fixes, algorithmic updates, back-
ground theory selection, and others. Through these results
and feedback from the developers, we summarize common
causes of SPRs. To the best of our knowledge, we are the
first to detect and analyze performance regressions intro-
duced during the evolution of SMT solvers. To summarize,
we make the following contributions:

� We developed a regression testing tool, SPRFinder,3

to detect the performance regressions between multi-
ple versions of the solver. Besides, we empirically
investigate the impact of random seed configuration
when detecting SPRs.

� We proposed an automated localization technique to
identify the commit that is responsible for the
detected performance regression issues.

� We conducted the evaluation to demonstrate the
effectiveness and the usefulness of our methods. We
have identified a total of 146 commits that can cause
SPRs in Z3Seq, Z3Str3, and CVC4, where 27of them
have been confirmed and 6SRPs have been fixed by
the developers.

� We carried out the first empirical study to explore the
characteristics of SPRs, including understanding the
root causes of SPRs and characterizing the regressing

1. Note that CVC4-1.9 is not released and we use its latest develop
version as of January 2021.

2. Users can configure the parameter of “random seed” or use the
default setting when running SMT solvers to control the propositional
variable selection in the SMT core, which would probably affect the
results of SPRs detection.

3. The source code of SPRFinderis public available on GitHub
(https://github.com/ConfZ/SPRFinder).
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test cases based on developers’ feedback, and provide
useful findings for the research community.

2 BACKGROUND

We begin by introducing the definitions of string solver and
the solver performance regressions (SPRs), and presenting
the strategy used in Banditfuzz [17].

2.1 String Solver

String constraint solving is the branch of the satisfiability
modulo theories (SMT), whose typical constraint is on string
length , concatenation, replace, regular expression, etc. For
example, the following formula:

ðstr:contains ðstr:++ a bÞ cÞ

represents whether there exists an assignment for string
variables a; b; c that can make the concatenation of a; b con-
tains c. Such an assignment is also called a model of the for-
mula. If the assignment exists, we say that the formula is
“SAT”. Otherwise, the formula is “UNSAT”. String solver is
developed to determine whether these string formulas are
“SAT” or “UNSAT”, and gives the corresponding models.

The growth of string manipulating programs in modern
programming languages, including PHP, Python, Java-
Script, et al., demands SMT solvers being capable of analyz-
ing string constraints. Especially in fuzzing and software/
hardware analysis domain, many new approaches [25],
[26], [27], [28] achieved better performance by adopting the
string solvers. As a fundamental reasoning system, string
solver plays an increasing significant role for the upper
applications.

2.2 BanditFuzz

Banditfuzz banditfuzz is a fuzzer to conduct the perfor-
mance testing and bug fuzzing for string and floating point
solvers (e.g., CVC4 and Z3). The most related part to our
work is the performance fuzzing for string solvers, so we
mainly introduce the strategy of performance fuzzing in
Banditfuzz as follows.

The motivation of BanditFuzz is to maximize the runtime
gap of a case in the distinct solvers. They deploy their muta-
tion strategy on a multi-armed bandit problem [29], which
is a common reinforcement learning [30], [31] problem in
MDP [32]. Specifically, Banditfuzz extends Stringfuzz [16]

as the generator (G) to generate the input cases, and takes
the SMT operator[33] (e.g., “str.++” and “str.replace”) as the
bandits (an action) in RL algorithm. In each testing loop,
BanditFuzz takes a test case t from G and runs C on the dis-
tinct solvers S1 and S2. Meanwhile, it computes the score
(SCO), which is defined as:

Score :¼ TS1 � TS2 ;

where TS1 and TS2 represent the running time of the solver
S1 and S2.

In mutation section, BanditFuzz chooses an operator r as
an action to generate a newmutant t0 by replacing one of the
operators in twith r, and then computes the score SCr. If SCr

is higher than SCO, Banditfuzz updates the Thompson sam-
pling bandit[34]. That means the r can make the solver
slower and more possible be selected in the next mutation.
After that, BanditFuzz selects the top score ranks of cases
and keep doing the next round. By this strategy, Banditfuzz
can expand the runtime gap after each testing loop.

Note that, BanditFuzz aims to maximize the runtime gap
of a case as much as possible on the distinct solvers. Even
though Banditfuzz can better enlarge the performance gap
on different solvers, it is limited to finding more diverse
and unique cases. Specifically, SPR detection asks for find-
ing more unique cases rather than only maximize the run-
time gap, while Banditfuzz may easily fall into repeating
mutation on the same case and lack diversity guidance for
more unique cases so that it is not fit for SPR detection.

3 OVERVIEW

Fig. 1 shows an overview of our approach including three
major steps: 1) performance regression testing for detecting
performance regression issues, 2) commit localization for
identifying the commit(s) responsible for the detected SPRs,
and 3) an empirical study to better understand the charac-
teristics and causes of SPRs. All the results of SPR cases and
SPR-inducing commits can be found on our website: https://
sites.google.com/view/sprfinder

SPR Identification Our test generation tool is extended
based on a performance fuzzer for SMT solvers, i.e., Bandit-
Fuzz. BanditFuzz is designed to generate inputs which max-
imize the performance difference between the target and
reference solvers. In principle, it can also be applied to dis-
cover performance regressions, which are manifested by the

Fig. 1. Overview of our work.
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performance gap between two versions of the same solver.
Yet, the default test generator used by BanditFuzz has a
fixed strategy to generate formulas, which may limit the
diversity of tests. It can perform well when two solvers
have different underlying algorithms and implementation
strategies, but does not work well when the two solvers
share great similarity (e.g., in the regression testing setting).
Moreover, BanditFuzz does not consider the code changes
which are responsible for the performance regressions.
Thus, the SPRs detected by BanditFuzz are often due to the
same underlying causes, limiting its potential in detecting
more bugs. Hence, we extended the design of BanditFuzz in
two main directions: 1) We extended the test generator to
support an adaptive configuration such that more diverse
test cases can be generated. 2) We proposed a dynamic time
warping (DTW)-based similarity [35], [36] for the guidance
of test generation so that diverse test cases, exposing SPRs
of different types, can be generated.

SPR Root Cause Localization Each identified SPR by
SPRFinderis triggered by a generated test input on a slow
target version (newer) and a fast reference version (older).
These regressions reflect performance slowdowns hap-
pened during the evolution of the solver. To help develop-
ers understand the root causes, we propose a method to
localize the commit(s) responsible for the SPRs. Although
the commit(s) may not correspond to the exact root cause of
the issue, they serve as a good starting point for further
investigation and debugging (the usefulness of these com-
mits were confirmed by developers in our issue reports).
Specifically, we employ an enhanced binary search over the
commits between the target and the reference versions, to
localize commit(s) introducing significant slowdowns.

Empirical Study After localizing the responsible commit
(s), it is sometimes still challenging for developers to under-
stand and fix the issues. We conduct an empirical study on
the detected SPRs to understand the intention of the local-
ized commits. We also analyze the impact of incremental
changes on the performance over a history range, and com-
pare the characteristics of SPRs across different solvers.
Additionally, random seed configuration to SMT solver can
affect the detection performance of SPRs. Therefore, after
the SPR detection, we run the test cases found by SPRFin-
deron 30 different random seeds, and see howmuch the ran-
dom seed configuration can affect the SPR testing and also
provide more information to the localization.

4 METHODOLOGY

4.1 Performance Regression Testing (SPRFinder)

Algorithm 1 shows how performance regression testing is
performed. It takes two versions of the solver as inputs and
returns a set of test cases that trigger SPRs. SPRFindermain-
tains a case queue T that contains a certain number of
inputs (i.e., b). At the beginning, it generates the initial cases
(Line 2) with the function Generator, which produces some
random SMT string formulas. Different from BanditFuzz,
we propose an adaptive configuration strategy to diversify
the generated test inputs. Then it starts the testing loop until
the given time limit is reached (Lines 3 to 20). For each case
t, if it causes a significant slowdown (Line 5), i.e., the execu-
tion time on the new version v1 is longer than the previous

version v0, a SPR is found and recorded (Line 6). We remove
it from the case queue (Line 7).

Algorithm 1. SPR Testing Based on BanditFuzz [17]

Input: v0; v1: two versions of a SMT solver
Output: R: a set of performance regression test cases
Const: a: the threshold for performance regression

b: the number of test cases in the queue
c: the configuration of the generator

1: R :¼ ;;
2: T :¼ Generatorðb; cÞ;
3: while time limit is not reached do
4: for t 2 T do
5: if tv1 � tv0 > a then
6: R R [ ftg
7: T  T n ftg;
8: continue;
9: action SelectActðÞ;
10: t0  Mutateðt; actionÞ;
11: if Scoreðt0Þ > ScoreðtÞ then
12: Dis :¼ DistanceðtÞ;

UpdateRewardðaction;DisÞ;
13: if t0v1 � t0v0 > a then
14: R R [ ft0g;
15: else
16: T  T [ ft0g;
17: T  KeepBestScoreðÞ;
18: NT  Generatorðb� lenðT Þ; cÞ;
19: T  T [NT
20: c AdaptiveConfigurationðcÞ;
21: return R;

The variable tv is used to represent the execution time4 of
test case t on the version v. If the execution time of the new
version v1 is longer than that of the previous version v0 by a
pre-defined threshold a (Line 5), an SPR is identified. Note
that, because the performance of string solvers may not be
stable, we choose a sufficiently large threshold a to reduce
noises introduced by the performance fluctuations. Besides,
the threshold is adjustable to, for example, drive the algo-
rithm towards identifying SPRs with significant impact. We
adopt the Thompson sampling method [17] to select an
action (i.e., a mutation operator) that is more likely to trigger
SPRs (Line 9). With the selected operator, we generate a new
mutant t0 by replacing one of the operators in t with action
(Line 10). Note that we use the same selection and mutation
strategy as BanditFuzz did, with details described in [17].
Then we compute the scores (c.f.Definition 1) of the mutant
and the original case respectively (Line 11). If the score of
the mutant is better than the original case, it indicates that
the selected action works well and the reward of the action
is updated with the Thompson sampling bandit [17] (Line
12). If a SPR is triggered by t0 (Line 13), we add it into R.
Otherwise, it is added into the case queue (Line 16). After
mutation, SPRFinderonly keeps the test case that achieve the
best score and removes the rest (Line 17). We then generate
a number of fresh cases using the generator (Line 18) and
add them into the queue (Line 19) so that the total number

4. We set a time limit for constraint solving to avoid non-
termination.
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is still b. Finally, the configuration c is updated if no SPR is
discovered after a time window (see details below).

We highlight the novelties in Algorithm 1 of SPRFinder-
compared with BanditFuzz as follows.

� In the Score calculation (Line 11), we propose a more
relaxed score calculation method to better guide the
following RL-based algorithm (c.f.Section 4.1.1).

� In the UpdateReward method (Line 12), we adopt a
novel DTW-based method (c.f.Definition 2 in Sec-
tion 4.1.2) to calculate the time distance between
SPR-inducing cases to adjust the reward increment.
Thus, the action selection can be better guided for
more diverse SPR-inducing cases.

� In the AdaptiveConfiguration method (Line 20), we
propose a self-adaptive configuration strategy to
dynamically adjust the seed generator so that it can
effectively generate diverse cases (c.f.Section 4.1.3).

4.1.1 Performance Score for SPR Detection

When deciding if an input triggers an SPR, we compare
the solving time taken by the target version (the latest one)
with the minimum solving time over all other versions. If
the gap is bigger than the threshold, we consider it as an
SPR. The performance score used in Algorithm 1 is defined
as follows.

Definition 1 (Performance Score). Given an input t and its
execution time (tv0 ; tv1 ; . . . ; tvn ) on multiple versions (v0, v1, ...,
vn) of a solver, its performance score is calculated as

ScoreðtÞ ¼ tvn �minðtv0 ; . . . ; tvn�1Þ;

where tvn refers to the latest version.

4.1.2 Distance-Based Reward Calculation

To guide towards more diverse SPRs, we design the
reward function used in Algorithm 1 to take into account
the similarity between test cases. Ideally, we would like
to know if two given test cases may trigger SPRs due to
the same underlying root cause. However, this cannot be
determined before the actual causes are localized.
Instead, we approximate the similarity in root causes
with the similarity in the duration of the caused slow-
downs. This also reflects our observation in practice that
similar slowdown patterns are often caused by the same
commit(s).

Thus, we modify the reward function used by Bandit-
Fuzz with discount factors to consider the similarity of
slowdown patterns, so that reward is discounted when a
test input share similar pattern with an existing case.

To this end, we use TSðtÞ ¼ ðtv0 ; tv1 ; . . . ; tvnÞ to represent
the execution time sequence of the test case t at each
version.

Definition 2 (Distance of Time Sequence). Suppose T is
the test cases generated before, the distance between t and T is:

DisðtÞ ¼ minðfDTWðTSðtÞ; TSðt0ÞÞj8t0 2 TgÞ;

where DTW (Dynamic time warping) [37] is a classic algo-
rithm to compute the distance between two temporal sequences.

Intuitively, when the distance is large, the new input t is
considered to be more different from the test cases in T .
Then the reward is updated as:

RewardðAÞ :¼ RewardpreðAÞ þ g �DisðtÞ;

where g is the discount factors. A represents the selected
action and RewardðAÞ is the corresponding reward of the
action A. RewardpreðAÞ refers to the reward of A in the pre-
vious detection round.

4.1.3 Adaptive Configuration Update

We empirically observed that the generator chosen has a
direct impact on SPRFinder’s capability of discovering SPRs.
Our study also revealed that the following parameters may
affect the complexity of the generated constraints: 1) the
length of the string constants, 2) the number of variables, 3)
the number of sub-formulas (i.e., asserted statements), and
4) the depth of the nested operations.

Further investigation confirmed that the generated tests
by BanditFuzz do not cover more complex constraints.
Besides, increasing the complexity parameters (e.g., the
length and the number of formulae) can result in more com-
plex constraints, and thereby longer unit solving time for
both the target and reference versions.

To balance between diverse constraints and short unit
solving time, and also to avoid local optimum, we propose
to adjust the complexity parameters based on the number of
SPRs identified during a time window, to allow the con-
straint complexity to be adjusted gradually (c.f.Section 5.2).

These parameters will be updated if no SPR was found
during a time interval t. We add or subtract a random value
in each update. Specifically, the parameters are updated
based on the time interval during which no SPR is detected.
Suppose the starting time is t0, then

� If no SPR was found within one interval (i.e.,
ðt0; t0 þ tÞ), the length of string constant L would be
increased or decreased a random value in ½20; 50�,
where L 2 ½10; 500�.

� If no SPR was found within two intervals (i.e.,
ðt0; t0 þ 2tÞ), the number of variables V would be
increased or decreased a random value in ½1; 5�,
where V 2 ½3; 20�.

� If no SPR was found within three intervals (i.e.,
ðt0; t0 þ 3tÞ), the number of sub-formulas S would be
increased or decreased a random value in ½1; 3�,
where S 2 ½4; 15�.

� If no SPR was found within four intervals (i.e.,
ðt0; t0 þ 4tÞ), the depth of the nested operations D
would be increased or decreased by 1, where D 2
½2; 6�.

� If no SPR was found within five intervals (i.e.,
ðt0; t0 þ 5tÞ), we update the starting time as t0 :¼
t0 þ 5t and continue to repeat the process from the
first step.

We empirically set the range of each parameter (e.g.,
L 2 ½10; 500�) and then increased/decreased values. If the
new value is out of range, we will ignore the update. Each
parameter is increased if tave < u � Ttimeout, or decreased if
tave � u � Ttimeout, where tave is the average unit solving time
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of all generated cases and Ttimeout is the timeout threshold. u
is a configurable threshold. Intuitively, if the average solving
time exceeds u � Ttimeout, the complexity of the generated case
is too high, which may affect the testing performance. Thus
the parameters should be decreased to derive a reasonable
unit solving time. Otherwise, the parameters are increased to
grow the constraint complexity. Owing to this strategy, we
can generate more diverse test cases (c.f.Section 5.2).

4.2 Commit Localization

After SPRs are successfully identified, we localize commit(s)
responsible for these regressions as an approximation to the
root cause, aiming to find the code changes which led to the
performance slowdown. By narrowing the causes down to
specific commits, we can then analyze and debug them
more easily. A naı̈ve method is to compile the solver at each
commit and compare the performance of each input with/
without the commit. But, it is impossible to enumerate all
combinations considering the compilation and solving time
on each commit and input.

The traditional bisect-based tool such as git-bisect [38] is
not suitable for this specific task due to the following three
reasons. 1) The traditional bisect-based approaches can only
deal with one case in each localization round, while testing
hundreds of cases found by SPRFinderrequires repeated
compilation and test runs, taking a huge amount of time
and effort. 2) Many abnormal solver feedback such as
unknown results, crashes, and timeouts require special
treatment in the performance testing scenario. 3) The run-
ning time of string solvers is unstable, and small fluctua-
tions may mislead the localization. Therefore, we propose
an enhanced binary search to localize commits for a batch of
test cases together with customized support for solver per-
formance testing. The goal is to locate the relevant commits
while minimizing the time taken. The basic idea is to map
test cases into consecutive commits (i.e., commit range),
which are gradually narrowed down by binary search, until
the target commit is located.

Algorithm 2 shows the main procedure that identifies the
commits for a set of test cases. The inputs to the algorithm
include two versions of the target solver (e.g., CVC4-1.7 and
CVC4-1.8) and a set of test cases that trigger the SPRs. Note
that, the algorithm can easily be extended to work on multi-
ple versions. A stack s is used to maintain the updated com-
mit ranges during the search (Line 2). Each item in s

includes a range and the test cases that fall within this range
(i.e., the range of commits containing the responsible com-
mit). At the beginning, all test cases T belong to the range
ðCv0 ; Cv1Þ (Line 3), where ðCv0 ; Cv1Þ represent all the com-
mits in between the two versions v0 and v1.

SPRFinderthen refines the ranges with binary search,
until the commit can be localized for each test case (Lines 4
to 24). SPRFinderupdates the commit range ðCvs ; CveÞ of T 0
(Lines 23 to 25) in each bisection round, where Cvs and Cve

represent the starting commit and the ending commit of the
commit range, respectively. Specifically, if two commits are
adjacent (Line 6), we can already localize the commit, i.e.,
Cve , for the test cases T 0 (Lines 7-8). Otherwise, we pick a
middle commit Cvm (Line 10) and build the new version vm
(Line 11). The commit Cvm splits the original commit range
into two parts and we perform binary search over them. We

use left and right to represent the test cases that belong to
the first and the second halves of the range, respectively.
For each test case t, we run it at vm and obtain the running
time tvm (Line 14). We use tvs and tve to respectively repre-
sent the running time of a test case on the two versions vs
and ve, i.e., after the starting commit Cvs and the ending
commit Cve . In the binary search, we need to determine
whether the responsible commit should be closer to the start
version (i.e., in left part) or the end version (i.e., in the right
part). Thus, we compare the closeness between the running
time of the two versions based on a threshold (i.e.,

jtvs�tve j
3 ). If

the time difference is less than this threshold, two versions
are assumed to have similar running time. Specifically, if
jtvm � tvs j < jtvs�tve j

3 , it means that tvm is closer to tvs (Line
15), so that the responsible commit for t should fall into the
right half (Cvm; Cve ) (Line 16). Similarly, if jtvm � tve j <jtvs�tve j

3 , it means that tvm is closer to tve (Line 17), and then it
falls into the left half (Cvs ; Cvm ) (Line 18). Otherwise, if
jtvm � tvs j � jtvs�tve j3 and jtvm � tve j � jtvs�tve j3 , it demonstrates
that tvm is neither closer to tvs nor closer to tve , the responsi-
ble commit falls into both halves. Finally, we put the refined
ranges into the range stack (Line 23 and Line 25) and SPRFin-
dercontinues the refinement process in the next iteration.
This way, we perform the search for a batch of tests T in one
go. The complexity of the algorithm is Oðlogn� jT jÞ, where
n stands for the number of commits between v0 and v1.

Algorithm 2. Commit Localization

Input: T : A set of test cases v0; v1: two versions of a SMT
solver

Output: R: the localized commits
1: R ;;
2: Let s be an empty stack;
3: s:pushððCv0 ; Cv1Þ; T Þ;
4: while s is not empty do
5: ðCvs ; CveÞ; T 0  s:popðÞ;
6: if Cvs and Cve are adjacent then
7: for t 2 T 0 do
8: R R [ fðt; CveÞg;
9: continue;
10: Cvm  BiSectðCvs ; CveÞ;
11: vm  ResetðCmÞ;
12: left ;, right ;;
13: for t 2 T 0 do
14: tvm  executeðvm; tÞ;
15: if jtvm � tvs j < jtvs�tve j

3 then
16: right right [ ftg;
17: else if jtvm � tve j < jtvs�tve j

3 then
18: left left [ ftg;
19: else
20: right right [ ftg;
21: left left [ ftg;
22: if left is not empty then
23: s:pushððCvs ; CvmÞ; leftÞ;
24: if right is not empty then
25: s:pushððCvm; CveÞ; rightÞ;
26: return R;

Even if the seed generator (c.f. Algorithm 1, Line 2) and
the operator based mutator (c.f. Algorithm 1, Line 10) are
designed only for string solvers in this work, they can be
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further customized for other SMT solvers to solve a similar
problem. Besides, the commit localization technique for
batch of cases is also generally applicable in root cause iden-
tification for performance issues of other solvers.

5 EVALUATION OF SPRFINDER

In this section, we evaluate our approach in order to answer
the following research questions.

� RQ1: How effective is SPRFinderin detecting perfor-
mance regressions?

� RQ2: How much does the random seed configura-
tion affect the SPR detection?

� RQ3: How accurately and efficiently can SPRFinder-
localize responsible commit(s) for the SPR-inducing
test cases?

5.1 Setups

Benchmarks We selected two widely used string solvers (i.e.,
Z3 [1] andCVC4 [2]) for the evaluation of ourmethod. Specifi-
cally, we selected the latest three versions for each solver, i.e.,
4.8.7, 4.8.8 and 4.8.9 for Z3, as well as 1.7, 1.8, and 1.9 for
CVC4. Note that for Z3, there are two alternatives for string
solving: the theory of strings (via Z3Str3 solvers) and the the-
ory of sequences (via Z3Seq solver). We used both of them in
our experiments. There is a “random seed” parameter (e.g.,
controlled by “–random-seed” for CVC4 and “smt.ran-
dom_seed” for Z3) in all the target solvers which controls
heuristic selection in the SMT core. The random seeds chosen
may have an impact on the solver’s runtime performance
even on the same input formulas. For each solver, we feed the
three selected versions to SPRFinderand generate test cases
that trigger SPRs between any two of the three versions by the
default random seed configuration, since non-expert users
aremore likely to use the solver with the default settings.

Approaches under Comparison To be consistent with the
threshold defined in Algorithm 1, we also define the perfor-
mance regression threshold of the approaches under com-
parison as a. We compared SPRFinderwith two approaches
(i.e., random fuzzing and BanditFuzz_SPR) in the following
experiments to demonstrate the effectiveness of SPR detec-
tion. Specifically, we implemented a random fuzzer which
adopts a random seed generator. In addition, we further
customized BanditFuzz (named BanditFuzz_SPR) because
original BanditFuzz is limited in detecting performance
regression issues. The main reasons include: 1) If Bandit-
Fuzz finds an SPR-inducing case, it spends much time
mutating it, instead of the other seeds. This is because Ban-
ditFuzz aims to maximize the time difference, rather than
finding a set of diverse SPR-inducing cases. 2) The seed gen-
erator of BanditFuzz is configured with fixed parameters,
which limits the diversity of the generated test cases (more
detailed analysis can be found in Section 5.2)

Thus, we built BanditFuzz_SPR, which customized Ban-
ditFuzz in the following two aspects. 1) After finding a SPR,
BanditFuzz_SPR restarts and initializes all the settings,
while BandiFuzz keeps running until time is up. 2) Bandit-
Fuzz_SPR randomly adjusts parameters for the generator in
each test case generation, while BanditFuzz adopts the
default fixed parameters.

5.2 RQ1: Effectiveness of Performance Regression
Testing

Setup (RQ1) We ran SPRFinder, SPRFinder without DTW,
BanditFuzz_SPR, and Random fuzzing on a target solver
(i.e., Z3Str3, Z3Seq, and CVC4) for 12 hours to generate test
cases triggering performance regressions. To reduce ran-
domness, we repeated the process for 5 times. For each test
case, we set a 20-second timeout for the solver and ran them
with the default random seed configuration. We set the
number of test cases in the queue (b in Algorithm 1) as 5.
We set the discount factor g in Section 4.1.2 as 0.05, and set u
in Section 4.1.3 as 3/4. We compared the results using two
metrics: the number of unique SPR-inducing test cases gen-
erated and the number of unique commits localized based
on the generated test cases.

To determine the threshold, we evaluated the perfor-
mance stability of running solvers. Specifically, we gener-
ated 500 string formulas and ran each case 10 times on the
same version to test the stability of these solvers. Table 1
shows the average time, average time differences, and the
maximal time difference of each string formula. We can see
that the maximal time difference and the maximal average
time are 2.02s and 9.91s on Z3Str3, respectively. Hence, in
our paper, we chose 10s as the threshold, which is a safe set-
ting considering the performance instability (compared to
2.02s). Moreover, the slowdowns caused by the identified
SPRs would be significant enough, i.e., the regression can
affect the normal usage of the solvers (compared to 9.91s).

Results Figs. 2 and 3 show the averaged results of the
total number of generated test cases and the total number of
commits localized based on the test cases. The x-axis repre-
sents the running time, ranging from 0 to 12 hours. Overall,
we can see that SPRFinderis more effective than random
fuzzing, BanditFuzz_SPR, and SPRFinderwithout DTW. We
also noticed that SPRFinderand BanditFuzz_SPR outper-
form random testing (i.e., the Non-RL fuzzer), demonstrat-
ing that reinforcement learning can be helpful in this task.
Furthermore, SPRFinderis more effective than Bandit-
Fuzz_SPR, which indicates the usefulness of our strategies,
i.e., the guidance from the performance score (c.f. Definition
1), the adaptive configuration and the distance-based
reward. Note that, even if Fig. 2 shows that the improve-
ment by using DTW seems to be limited in terms of the total
number of generated cases, we still see that SPRFindergener-
ates more unique SPR cases with a higher speed when
adopting DTW, based on Fig. 3. That fits our goal well of
finding unique SPRs which have different underlying
causes, rather than only optimizing the total number of pos-
sibly repeated cases.

Table 2 shows the average results of both tools after the
12-hour experiment. We can see that, on average, SPRFin-
derdetects 362.4, 232.6, and 59.2 SPR test cases in total, on

TABLE 1
Running Time on the Same Versions of Solvers

Avg time Avg diff Max diff

# Z3Seq 2.05 0.11 1.69
# Z3Str3 9.91 0.24 2.02
# CVC4 1.43 0.03 0.35
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the three versions of the target solvers, respectively. With the
commit localization technique applied on the detected test
cases, SPRFinderlocalizes 49.8, 25.2, and 10.0 SRP-triggering
commits, respectively. Considering all repeated runs com-
bined, SPRFinderfound a total of 66, 61, and 22 unique com-
mits for Z3Seq, Z3Str3, and CVC4, respectively. We reported
10 and 15 issues to the developers of Z3 and CVC4, respec-
tively, where 4 and 12 of them have been confirmed. Note
that, 3 SPRs in CVC4 have been fixed up to today.

We found less SPR-inducing commits in CVC4 compared
with Z3Seq and Z3Str3, which is a potential indication of the
tools’ performance stability.

Answer to RQ1: SPRFinderis more effective than the base-
line approach (i.e., BanditFuzz_SPR) in detecting perfor-
mance regressions, and DTW helps to detect more cases
with unique causes.With SPRFinder, we found 66, 61, and
22 unique SPR-inducing commits in total. This results
also show that there are many performance regression
issues in well-established string solvers, which should be
considered especially when applied in performance-criti-
cal applications.

5.3 RQ2: Impact of the Random Seed Configuration

Setup We empirically evaluated the test cases under differ-
ent choices of random seeds and further investigated the
impact of random seeds for SPR detection. Specifically, we
took all 653 cases (362 for Z3Seq, 323 for Z3Str3, and 59 for
CVC4, respectively) detected by SPRFinderin RQ1 using the
default random seed as the subjects. The problem with the
default random seed is that it is based on heuristics and
may incur different solver behaviors across multiple ver-
sions. This brings a threat to the validity of our detected
SPRs. To eliminate the noise from random seeds, we ran
each detected case on the corresponding solver by fixing the

random seeds across versions, with different choices rang-
ing from 1 to 30.5 Similar to RQ1, we set a 20-second timeout
for each solving and the performance regression threshold
(a) as 10 seconds. Finally, we calculated the number of SPR
cases triggered under different random seed configurations.

Results Fig. 4 shows the percentage of cases that success-
fully triggered SPRs with various choices of random seeds.
The value of n represents the number of random seeds
caused SPRs on a test case. We classified n values into the
following five ranges, namely, n ¼ 0, 0 < n < 10, 10 � n <
20, 20 � n < 30, and n ¼ 30, representing the different lev-
els of generality of the detected SPRs. For example, n ¼ 0
represents that the test case was triggered by the default
seed, but cannot be triggered by any of the 30 fixed random
seeds. This indicates that the SPR case is likely due to the
noise incurred by the default random seed when applied
across multiple versions. In contrast, n ¼ 30 represents that
the test case can be reproduced by all of the 30 random
seeds. This serves as a strong evidence for the generality of
the test, which also indicates a real reproducible perfor-
mance regress issue.

Based on the experiment results, we found that 67.8% of
the SPR-triggering cases can be reproduced on all the 30
random seeds for CVC4, while only 5% of the cases in
Z3Seq and 50% of the cases in Z3Str3 can be reproduced.
This shows that the random seed settings have a larger
impact on Z3seq and Z3Str3, when compared with CVC4.
In addition, there are 16.9% of the cases in CVC4 which can-
not be reproduced with the fixed random seeds. The same
values for Z3Seq and Z3Str3 are 2.8% and 0.4%, respec-
tively. In general, 27.8% of the detected cases with the
default random seed configuration can be reproduced on all
the tested random seed configurations.

Fig. 2. The total number of test cases generated by BanditFuzz_SPR, Random Fuzzing, and SPRFinder.

Fig. 3. The total number of localized unique commits detected by BanditFuzz_SPR, Random Fuzzing, and SPRFinder.

5. The seeds 1 to 30 were suggested by the Z3 developer [39].
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Answer to RQ2: The random seed configuration has an
impact on SPR detection. Still, most (96.8%) of the SPR
cases found in RQ1 can be triggered with at least one
fixed seed configuration. SPR detection on Z3Seq is more
easily affected by the choices of random seeds, compared
with other solvers.

5.4 RQ3: Effectiveness and Efficiency of Commit
Localization

Setup We evaluated effectiveness of the commit localization
technique by comparing the performance differences
between the version before the localized commit (a.k.a.
before-commit version) and the version after this commit (a.
k.a. after-commit version). Note that, in the localization, for
each case we randomly selected one specific seed from the
SPR-inducing seeds (identified in RQ2). For example, if a
SPR is successfully reproduced on seeds 1 to 20 (in RQ2),
we randomly pick a seed from the range. For each commit,
we built two versions of the solver, i.e., the before-commit
version and the after-commit version and measured the
respective running time. A larger time difference indicates a
better accuracy in the commit localization.

Besides, we aim to investigate if SPRFindercan handle all
the conditions along the whole commit histories. To do this,
we built the commit histories of each solver (i.e., Z3 and
CVC4) and run these SPR-inducing cases (in RQ1) on the
whole commit histories of these solvers. Then, we selected
the representative cases of the results and classified them
into different categories. Finally, we checked if SPRFinder-
can accurately locate theses cases by analyzing the time

trend of version updates. Finally, we evaluate the efficiency
of our commit localization approach by comparing SPRFin-
derand git Git. We used all test cases (generated by
SPRFinder) in RQ1, and We ran both SPRFinderand Git-
bisect for 12 hours on the target solvers (i.e., Z3Seq, Z3Str3,
and CVC4) to test which approach can locate more cases
during the time range.

Results Table 3 shows the averaged results. Column
#Commit shows the total number of localized commits for
each solver. Column Before shows the average time over-
head of all test cases on the corresponding before-commit
versions and Column Right shows the average time over-
head of all test cases on the corresponding after-commit ver-
sions. Column Difference shows the average time difference
between the before-commit version and the after-commit
versions. The results show that with the localized commits,
the test cases have a considerable time difference (i.e., 18.8,
19.3, and 16.8 seconds), which indicates that SPRFinderis
able to localize SPR-inducing commits accurately.

Fig. 5 shows the representative results of single cases
running on the commit histories of the target solvers. The
x-axis represents the commit history of the solver versions,
i.e., Z3-4.8.7 to Z3-4.8.9 or CVC4-1.7 to CVC4-1.9, and the
y-axis represents the running time of the solver. C and C0

represent responsible commits and Cm represents the mid-
dle commit of the commit histories. We classify the results
by two dimensions, i.e., Monotonic/Non-monotonic, Sin-
gle-Dominant/Multi-Dominant. Specifically, Monotonic/
Non-monotonic represents whether the time varies monoto-
nously, and Single-dominant/Multi-dominant represents if
the SPR is dominated by one commit or multiple commits.
We analyzed the localization ability of SPRFinderfrom the
following four conditions.

1) Monotonic & Single-Dominant: As shown in Fig. 5 (a),
the running time increases monotonically during the

Fig. 4. Percentage of the cases that triggered SPRs by varying random
seeds, and n represents the number of SPRs triggered by fixing random
seeds to 1-30.

TABLE 3
The Average Time Overload before and after a Commit

#Commit Before After Difference

Z3Seq 66 0.7 19.5 18.8
Z3Str3 61 0.7 20.0 19.3
CVC4 22 3.1 19.9 16.8

Average (second) 1.5 19.8 18.3

TABLE 2
The Average Results of BanditFuzz_SPR, Random Fuzzing, and SPRFinderafter 12 Hours

Z3Seq Z3Str3 CVC4

min max avg min max avg min max avg

#Test

SPRFinder 359 371 362.4 221 238 232.6 52 68 59.2
SPRFinder without DTW 330 346 337 213 224 218.4 46 49 47.4
BanditFuzz_SPR 170 192 186 183 191 187.5 31 39 35.6
Random 146 161 157.2 133 142 137.6 22 28 24

#Commit

SPRFinder 49 51 49.8 24 26 25.2 9 11 10
SPRFinder without DTW 42 44 43.6 19 20 19.2 8 9 8.2
BanditFuzz_SPR 38 42 40.2 17 20 18.6 4 7 5.2
Random 36 43 39.8 17 19 18.2 1 4 2
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commit histories, and obviously there is a steep soar
that makes the main contribution to the SPR (a.k.a.
SPR is dominated by single commit in the commit
histories). In this condition, SPRFindercan accurately
locate the commit C accordingly.

2) Monotonic &Multi-Dominant: Compared with Single-
Dominant scenario, Multi-Dominant is more compli-
cated. As shown in Fig. 5 (b), the time grows monot-
onously but more than one commit induced a soar.
Note that our algorithm (Line 15 and Line 17 in
Algorithm 2) disregards the little fluctuations, so we
mainly focus on the significant variations. Obvi-
ously, both C and C0 are dominating commits for the
SPR. In this condition, when the first round bisection
locates Cm as the middle commit, SPRFindercan
move to both left and right, so that both the responsi-
ble commits C and C0 can be accurately located.

3) Non-Monotonic & Single-Dominant: In this condition,
the solver performance is non-monotonic but SPR is
dominated by a single commit. For example, in Fig. 5
(c), both C and C0 can make the running time grow
up, while C0 is not the domination because the run-
ning time here is less than our threshold in Algorithm
2 (Line 15). Therefore, SPRFindercan accurately locate
the dominating commits.

4) Non-Monotonic & Multi-Dominant: This condition is
the most complicated one because SPRFindermay
not be correctly guided to find all the dominating
responsible commits. For example, as shown
in Fig. 5 (d), both C and C0 are dominating commits.
Once SPRFinderbisects to Cm, it will determine that
the target commit falls into right. Therefore, SPRFin-
dercan only find C but miss and C0. Even though
SPRFinderwould miss some results, it can achieve a
better performance and locate to at lest one accurate
commit, since localization for a batch of test cases is
quite a time-consuming task in practice. In fact, it is
a trade-off solution between performance and accu-
racy in terms of the localization algorithm.

Fig. 6 shows the average cases localized by Git-bisect and
SPRFinder. The x-axis represents the time ranging from 0 to
12 hours. We can clearly see that SPRFinderis much more

efficient, which is about 8� faster than Git-bisect in our
commit localization setting.

Answer to RQ3: In the most conditions of the commit histo-
ries, SPRFinderis effective and efficient in localizing the
responsible commits for the given performance regression
cases. The average time taken at the before-commit version
is 1.5 seconds,while that at the after-commit version is 19.8
seconds. This is a strong indication that the localized com-
mits are indeed responsible for the SPRs. SPRFinderis
more efficient (8x) thanGit-bisection in our batch scenario.

6 EMPIRICAL STUDY

Owing to the ability of SPRFinderand our own experiences
in performing the experiments, we conducted an empirical
study to have a deeper understanding of the characteristics
of SPRs and attempt to answer the following research
questions.

� RQ4: How do incremental code changes impact the
solver performance?

� RQ5: Why do the localized commits cause perfor-
mance regression issues?

6.1 RQ4: Impact of Incremental Code Changes

Setup First, we aim to study the performance impact along
the whole commit histories. Specifically, we would like to

Fig. 5. Running time of single cases on commit histories of string solvers.

Fig. 6. The average cases localized by Git-bisect and SPRFinder.
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observe whether a single test case may trigger multiple
SPRs along the evolving versions of the solvers. We used
all the localized commits in RQ1 (i.e., 66, 61, and 22 in
Z3Seq, Z3Str3, and CVC4) as reference points and built
two reference versions, before and after each commit. We
then randomly selected one test case for each such commit,
which runs significantly slower at the newer version.
Thus, 66, 61, and 22 test cases were selected for Z3Seq,
Z3Str3, and CVC4, respectively. Finally, we ran each test
case on all the reference versions and checked whether a
SPR is triggered at this version. We calculated how many
SPRs can be discovered along the commit histories using
each test.

Results Fig. 7 shows the detailed results on each solver.
The x-axis represents the number of SPRs discovered by a
single test case along the version histories. The y-axis rep-
resents the number of test cases that fall into the corre-
sponding category. For example, for Z3Seq, there are 15
test cases which trigger SPRs on 4 different commits and 1
case which triggers SPRs on 13 commits. In general, we
find that a single test case may trigger multiple SPRs
through the commit histories, which indicates the instabil-
ity of the solver performance during incremental updates.
For example, a test may run faster after some commits, but
become slower again after the subsequent commits. In par-
ticular, some cases in Z3Seq and Z3 Str3 have gone
through more than 10 fast-to-slow changes during the evo-
lution of the solvers.

Fig. 8 shows the detailed performance vibration of an
example case, by fixing the random seed to 2. In the corre-
sponding commit histories, it triggered three performance
regression issues. Specifically, after the commit 78feac446,

the SPR was triggered for the first time. Then the issue was
fixed by a later commit between 78feac446 and e075f3815.
Next, it triggered the second SPR (right after e075f3815),
which is then fixed before the commit d372af478. In the end,
it triggered the third regression right after d372af478.

In general, CVC4 tends to be more stable while Z3Str3
seems the most unstable. For example, for CVC4, most test
cases (12) only trigger SPRs once. The maximum number
of SPRs triggered by one test case was 3. For Z3Str3, the
number of SPRs triggered by one test case may vary from
1 to 12.

Answer to RQ4: The performance of the string solver is
unstable. During the evolution of the solver, some test
cases may trigger SPRs multiple times, i.e., a test case
can reveal SPRs caused by multiple commits.

6.2 RQ5: Empirical Study on SPR-inducing
Commits

After the SPR-triggering commits are localized, the natural
next step is to understand and fix the issues. Fixing perfor-
mance regressions is a challenging task. Therefore, we con-
ducted an empirical study to understand the developers’
intentions behind these commits. We manually analyzed
the commits in combination with the developers’ feedback
and summarized the following reasons.

1) Program Fixes. Some commits aim to fix known bugs
in the program. As a result, it may cause perfor-
mance degradation on some input examples.

2) Algorithmic Update/Optimization. There are a major
part of commits that update algorithms used by the
string solvers. It may improve the performance on
some inputs, but we found it worsens the perfor-
mance on other inputs by a large margin.

3) Theory Selection. String solvers rely on other back-
ground theory solvers to handle arithmetic, array,
and other functions. Yet, some commits update
these theory solvers, which results in performance
regressions.

4) Unknown. There are also some other commits for
which we fail to identify the intentions.

Table 4 shows the number of commits based on the
intentions behind the update. We found that many SPRs
were caused by program fixes (38.3%) and algorithmic
updates/optimizations (39.6%). In total, SPRFinderdiscov-
ered 66, 61, and 22 SPR-inducing commits in Z3Seq,
Z3Str3, and CVC4, respectively. Based on the feedback

Fig. 7. Distribution of test cases based on the number of SPR-inducing commits exposed by the test case.

Fig. 8. The performance vibration of a test case On Z3Seq by fixing ran-
dom seed = 2.
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from the developers, we further classified the commits into
two types: performance compromises and performance bugs.
For the performance compromise commits, developers
aim to fix bugs or improve performance on some test
examples while sacrificing that of others. We observed
that programmers made the compromise intentionally, as
a more comprehensive solution was yet ready. For the per-
formance bugs, developers were unaware that such com-
mits may have side effects, which could have been
mitigated if known in prior.

Note that it is sometimes difficult to judge objectively
whether a commit is performance compromise or perfor-
mance bug, as it requires confirmations from the develop-
ers. We could not always obtain such confirmation, and
thus classified the commits conservatively with best efforts.
If the commit messages clearly indicate that there were
known issues and compromises made, we regarded them
as the performance compromise commits. For performance
bugs, we only calculated the commits that have been con-
firmed or fixed by developers. Row Class. of Table 4 shows
the classified results and other un-classified commits were
regarded as unknown.

We also include some feedback from the developers of
CVC4 on two types of the cases as follows. Note that, for the
second case, the developer marked them with a bug tag and
fixed them subsequently.

Performance compromise: “The commit bd2793a fixed a refu-
tation soundness bug. That commit was a straightforward fix
of a lemma that was unsound. Thus if CVC4 solved this
quickly before that commit and does not solve now, it may
have been due to unsound reasoning.”

Performance bug: “...This lead to an infinite loop of inferences
because we effectively were just splitting...a component into
two skolems and the only restriction was that the first one was
non-empty.”

We also investigated SPR-triggering test cases common
across different solvers based on the results from RQ1.
Specifically, for Z3Str3 and Z3Seq, there are 7 test cases,
traced back to 17 commits, that can trigger SPRs on both.
There are 9 test cases that trigger SPRs on both Z3Str3 and
CVC4, and one test case that triggers SPRs on both Z3Seq
and CVC4.

Answer to RQ5: The SPRs are usually caused when devel-
opers aim to fix known bugs, update the algorithms, and
make changes to the other theory solvers. There are
some comprises that developers made intentionally, and
some are because of the developers’ unawareness of
potential side effects of their changes on solver perfor-
mance. In addition, some common test cases seem to
trigger SPRs on multiple solvers.

6.3 Threats to Validity

The selection of versions and the string solvers could be a
threat to validity, which may affect the generalizability of
the RQ1 results. To mitigate it, we selected 2 state-of-the-art
string solvers and the latest 3 versions for the evaluation.
The randomness of solver performance may be another
threat to the results of RQ1. We repeated the process for 5
times and calculated the average results. Another threat
comes from the hyper parameters used in the algorithm,
e.g., the threshold of performance regressions and the num-
ber of seeds. The random seed chosen is another threat. In
answering RQ1, we selected the default random seed,
which may introduce noises in determining some SPR-
inducing test cases. We systematically experimented on the
choices of random seeds in RQ2. Finally, the classification of
performance compromises and bugs may not be accurate,
because the commits, which are classified as performance
compromises, may also contain unknown bugs.

7 RELATED WORK

SMT Solver TestingIn recent years, there have been many
studies focusing on functional testing of SMT solvers. Brum-
mayer et al. [40] developed FuzzSMT to randomly generate
SMT formulas, essentially performing fuzz testing on SMT
solvers. Yet, it does not handle formulas in the String theo-
ries. Bugariu et al. [41] proposed a formula synthesis
approach that is able to generate “SAT” or “UNSAT” formu-
las, which are then used as test oracle to detect soundness
bugs. Similarly, our work also relies on a seed generator,
which performs adaptive adjustments to the predefined
parameters, thus is able to balance between diversity and
performance. Moreover, we not only generate SMT formu-
las, but also use the distance-based reward to guide the sub-
sequent mutations. Most of the recent studies construct new
test cases by transforming existing seed tests according to
certain relations [13], [14], [42], [43], [44], [45]. The key idea is
to ensure that the satisfiability of the newly generated tests
can be predicted via the transformation rules. For example,
Mansur et al. [14] proposed to mutate SMT tests by breaking
up and rebuilding the formulas based on their models. A
limitation is that their mutator is not able to construct
“UNSAT” formulas. Winterer et al. proposed a series of
transformations [13], [42], [43] to either fusing two equisatis-
fiable formulas together, replacing operators, or changing
variables semantically. Yao et al. [45] introduced a simple but
effective SMT fuzzing technique that combines two different
input spaces, i.e., configuration space and semantic space, to
detect soundness bugs. They also proposed a mutation
approach [44], which produces mutants by over-approxi-
mating or under-approximating a SMT formula. In their

TABLE 4
Commit Triage Based on Its Intention

Z3Seq Z3Str3 CVC4 Total

Intention

Program Fixes 29 24 4 57
Algorithmic Update 24 26 9 59
Theroy Selection 4 4 0 8
Unknown 9 7 9 25

Total 66 61 22 149

Class.
Compromise 11 9 4 24
Performance Bug 0 0 3 3
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work, the test oracle of the transformed formula can be
inferred from the original seed. All these works above
mainly focus on detecting soundness bugs, while our work
targets performance regression issues across different ver-
sions of a solver.

As for the performance testing of SMT solvers, Dmitry
et al. proposed StringFuzz [16], which is an effective genera-
tor and transformer for SMT formula. They used the genera-
tion-based approach to produce and mutate valid test cases
to detect bugs and the performance limitations in string
solvers. To further study the performance gap between dif-
ferent solvers, Scott et al. [17] proposed to adopt a reinforce-
ment learning algorithm to detect performance issues and
soundness bugs. They also used the Thompson sampling
method to select the best operator for the following muta-
tion. Both works studied the performance testing of SMT
solvers, but none of them targets the performance regres-
sion issue concerning multiple versions of a solver. Our
work is the first to analyze the performance regression dur-
ing the evolution of a solver. Moreover, we also localize the
root causes of these cases to assist debugging.

BanditFuzz [17] is the most related one to our work.
SPRFinderis built based on BanditFuzz but can be distin-
guished from it in the following aspects: 1) SPRFinderis the
first work to study the SPR detection problem on different
versions of a solver, while BanditFuzz aims to find cases
causing a large performance gap between different types of
solvers. 2) SPRFindercares more about the diversity of the
SPR-inducing cases, while BanditFuzz mainly focuses on
enlarging the performance gap between solvers. 3) SPRFin-
dernot only detects performance regressions, but also auto-
matically localizes the responsible commits of SPRs, and we
conducted empirical studies on these commits to have a
deeper understanding of the root causes. The evaluation
results (c.f.Figs. 2 & 3 and Table 1) demonstrate that Bandit-
Fuzz is limited on SPRs detection. We adopted a dynami-
cally adaptive mutation strategy to generate more suitable
cases to trigger more performance regressions and adopted
a DTW-based similarity approach to improve diversity of
the mutants. Owing to these strategies, SPRFinderworks bet-
ter on SPR detection.

Regression TestingTo ensure that software evolution does
not affect the existing functionalities of software, regression
testing [46] has been adopted. It is a time-consuming task to
run the entire test cases during regression testing [47], there-
fore, regression test selection [48], [49], [50], [51], [52], test
suite minimization [53], [54], [55], [56], [57], [58], test case
prioritization [59], [60], [61], [62] have been widely studied
in this research area. Different from these research direc-
tions, to identify the root causes of issues (e.g., performance
issues, bugs) during regression testing, many researchers
focused on identifying issue-change commits, which is also
a prevalent challenge in regression testing. Because devel-
opers have to spend extra time and efforts narrowing down
which commit caused the issues.

To figure out the real cause of the program failures, Zel-
ler [63] proposed delta-debugging to find the minimal fail-
ure-inducing set by simplifying the input. But, this
approach mainly focused on the failure-inducing inputs
rather than commits localization, while our work aims to
locate SPRs to the corresponding commits. Coulder et al.

proposed a git bisect strategy [38] that can help debugger to
locate the regression by bisecting the commit history. How-
ever, both of the approaches above can only work on a sin-
gle case, so that not efficient enough on a batch of cases.
Besides, they are also not appropriate for SMT solver, while
our work mainly focuses on localizing commits for a batch
of test cases, which can minimize the compilation time and
customize to better handle the localization on solvers.

Cito et al. [64] used exploratory visual analysis and
change point analysis to identify the root causes of web per-
formance degradation issues. Similarly, Daly et al. [65] also
adopted change point detection to represent the significant
changes from a given history of performance results.
M€uhlbauer et al. [66] proposed an approach to identify con-
figuration-dependent performance changes. Huang et al.
[67] proposed performance risk analysis (PRA) to estimate
the risk of performance changes based on static analysis, so
that performance regression testing can further leverage the
analysis result to test commits with high risks first. Our
work distinguishes from these existing studies in two
aspects: 1) SPRFinder may generate many test cases and
each test case needs much time to solve (e.g., 20s), thus it is
expensive to localize the commit one by one. To improve
the efficiency, SPRFinder adopts the bisection-based
approach to localize commits for a batch of test cases. 2)
Our work mainly focuses on the discovering performance
regressions of SMT solver and analyze these regressions,
where commit localization is only one of the process.

8 CONCLUSION

In this paper, we studied performance regressions in string
solvers introduced during evolution. We developed an auto-
mated tool, named SPRFinder, which detects and localizes
solver performance regressions. SPRFinderis designed to
generate tests which maximize performance gaps between
different versions of the same solver. Based on the SPR-
inducing tests, we then localize the commits responsible,
which can be used as a starting point for further investiga-
tion. Based on the 149 commits identified, we also conducted
an empirical study to better understand the performance
issues in string solvers.

The future work mainly includes: 1) exploring more
advanced reward function for improving the performance
of SPR detection and 2) applying our framework to more
applications such as other types of solvers.
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